5 • With usual notation, if in a triangle ABC;

$$\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} \text{ then prove that } \frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}.$$
(1984 - 4 Marks)

Solution: -

5. Given that, in $\triangle ABC$,

$$\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13}$$

where a, b, c are the lengths of sides BC, CA and AB respectively.

Let
$$\frac{b+c}{11} = \frac{c+a}{12} = \frac{a+b}{13} = k$$

$$\Rightarrow b+c = 11 k \qquad(1)$$

$$c+a = 12 k \qquad(2)$$

$$a+b = 13 k \qquad(3)$$

Adding the above three eqs. we get

$$2(a+b+c) = 36 k$$

$$\Rightarrow a+b+c = 18 k \qquad(4)$$

Solving each of (1), (2) and (3) with (4), we get

Now,
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$